مهندسی کشاورزی - زراعت

آموزش و ترویج تولیدات کشاورزی

مهندسی کشاورزی - زراعت

آموزش و ترویج تولیدات کشاورزی

روشهای بیوتکنولوژی اصلاح گیاهان دارویی

اگرچه کاشت گیاهان دارویی به هزاران سال پیش باز می‌گردد ولی باید گفت که در مورد اصلاح آنها تاکنون پیشرفت قابل ملاحظه‌ای صورت نگرفته است و در حال حاضر، تعداد کالتیوارهای مفید به‌دست آمده بر اثر اصلاح گیاهان دارویی اندک است. هدف از اصلاح گیاهان دارویی، افزایش کمیت و کیفیت آن دسته از مواد مؤثره در این گیاهان است که در صنایع دارویی از اهمیت خاصی برخوردار هستند. در سال‌های اخیر توجه خاصی از جانب سازمان‌های مختلف در کشورهای جهان در ارتباط با اصلاح این گیاهان صورت گرفته است. در این راستا استفاده از تکنیکهای وابسته به کشت بافت و بیوتکنولوژی به منظور ارتقاء صفات کمی و کیفی و کاهش زمان اصلاح نباتات از اهمیت خاصی برخوردار است.
کشت بافت
با تکنیک کشت بافت می توان از یک سلول به یک گیاه کامل دست یافت. در این تکنیک از روشهای جنین زایی ریزازدیادی و اندام زایی استفاده میگردد.استفاده از این تکنیک به همراه موتاسیون باعث سرعت بخشیدن به تکثیر انبوه تولید گیاهان عاری از بیماری انجام کار در تمام طول سال و کاهش هزینه خواهد شد.
اولین مرحله تکثیر قسمت مورد نظر در گیاه می باشد.پس از تعیین دز مناسب و انجام تیمار پرتوتابی و تکثیر دوباره گزینش درشرایط In-vitro با اعمال تیمار تنش صورت میگیرد .گیاهان گزینش شده بعد از انتقال به گلدان جهت سازگاری و تکثیر دوباره جهت سلکسیون انتهایی در مزرعه کشت شده و سپس مورد بررسی های تغییرات زنتیکی قرار خواهند گرفت.
یکی از بخش‌های مهم بیوتکنولوژی “کشت بافت” است که کاربردهای مختلف آن در زمینة گیاهان دارویی، از جنبه‌های مختلفی قابل بررسی است:
باززایی در شرایط آزمایشگاهی ( In-Vitro Regeneration )
تکثیر گیاهان در شرایط آزمایشگاهی، روشی بسیار مفید جهت تولید داروهای گیاهی باکیفیت است. روش‌های مختلفی برای تکثیر در آزمایشگاه وجود دارد که از جملة‌ آنها، ریزازدیادی است. ریزازدیادی فواید زیادی نسبت به روش‌های سنتی تکثیر دارد. با ریزازدیادی می‌توان نرخ تکثیر را بالا برد و مواد گیاهی عاری از پاتوژن تولید کرد. گزارش‌های زیادی در ارتباط با بکارگیری تکنیک ” کشت بافت ” جهت تکثیر گیاهان دارویی وجود دارد. با این روش برای ایجاد کلون‌های گیاهی از تیرة لاله در مدت 120 روز بیش از 400 گیاه کوچک همگن و یک شکل گرفته شد که 90 درصد آنها به رشد معمولی خود ادامه دادند. برای اصلاح گل انگشتانه، از نظر صفات ساختاری، مقدار بیوماس، میزان مواد مؤثره و غیره با مشکلات زیادی مواجه خواهیم شد ولی با تکثیر رویشی این گیاه از راه کشت بافت و سلول، می‌توان بر آن مشکلات غلبه نمود. چنان‌که مؤسسة گیاهان دارویی بوداکالاز در مجارستان از راه کشت بافت و سلول گل انگشتانه موسوم به آکسفورد، توانست پایه‌هایی کاملاٌ همگن و یک شکل از گیاه مذکور به‌دست آورد.
باززایی از طریق جنین‌‌زایی سوماتیک (غیرجنسی)
تولید و توسعة مؤثر جنین‌های سوماتیک، پیش‌نیازی برای تولید گیاهان در سطح تجاری است. جنین‌زایی سوماتیک فرآیندی است که طی آن گروهی از سلول‌ها یا بافت‌های سوماتیک، جنین‌های سوماتیک تشکیل می‌دهند. این جنین‌ها شبیه جنین‌های زیگوتی (جنین‌های حاصل از لقاح جنسی) هستند و در محیط کشت مناسب می‌توانند به نهال تبدیل شوند. باززایی گیاهان با استفاده از جنین‌زایی سوماتیک از یک سلول، در بسیاری از گونه‌های گیاهان دارویی به اثبات رسیده است. بنابراین در این حالت با توجه به پتانسیل متفاوت سلول‌های مختلف در تولید یک ترکیب دارویی، می‌توان گیاهانی با ویژگی برتر نسبت به گیاه اولیه تولید نمود.
حفاظت گونه‌های گیاهان دارویی از طریق نگهداری در سرما
با تکیه بر کشت بافت و سلول می‌توان برای نگهداری کالتیوارهای مورد نظر در بانک ژن یا برای نگهداری طولانی مدت اندام‌های تکثیر گیاه در محیط نیتروژن مایع، اقدام نمود. نگهداری در سرما، یک تکنیک مفید جهت حفاظت از کشت‌های سلولی در شرایط آزمایشگاهی است. در این روش با استفاده از نیتروژن مایع (196- درجه سانتی‌گراد) فرآیند تقسیم سلولی و سایر فرآیندهای متابولیکی و بیوشیمیایی متوقف شده و در نتیجه می‌توان بافت یا سلول گیاهی را مدت زمان بیشتری نگهداری و حفظ نمود. با توجه به اینکه می‌توان از کشت‌های نگهداری شده در سرما، گیاه کامل باززایی کرد، لذا این تکنیک می‌تواند روشی مفید جهت حفاظت از گیاهان دارویی در معرض انقراض باشد. مثلاً بر اساس گزارشات منتشر شده، روش نگهداری در سرما، روشی مؤثر جهت نگهداری کشت‌های سلولی گیاهان دارویی تولیدکنندة آلکالوئید همچون Rauvollfia serpentine , D. lanalta , A. belladonna , Hyoscyamus spp . است. این تکنیک، می‌تواند جهت نگهداری طیفی از بافت‌های گیاهی چون مریستم‌ها، بساک و دانة گرده، جنین، کالوس و پروتوپلاست به‌کار رود. تنها محدودیت این روش، مشکل دسترسی به نیتروژن مایع است.
تولید متابولیت‌های ثانویه از گیاهان دارویی
از لحاظ تاریخی، اگرچه تکنیک ” کشت بافت ” برای اولین بار، در سال‌های 1940-1939 در مورد گیاهان به‌کار گرفته‌شد، ولی در سال 1956 بود که یک شرکت دارویی در کشور آمریکا ( Pfizer Inc ) اولین پتنت را در مورد تولید متابولیت‌ها با استفاده از کشت توده‌ای سلول‌ها منتشر کرد. کول و استابو (1967) و هبل و همکاران (1968) توانستند مقادیر بیشتری از ترکیبات ویسناجین ( Visnagin ) و دیوسجنین ( Diosgenin ) را با استفاده از کشت بافت نسبت به حالت طبیعی (استخراج از گیاه کامل) به‌‌دست آورند. گیاهان، منبع بسیاری از مواد شیمیایی هستند که به‌عنوان ترکیب دارویی مصرف می‌شوند. فرآورده‌های حاصل از متابولیسم ثانویه گیاهی ( Secondary Metabolite ) جزو گرانبهاترین ترکیب شیمیایی گیاهی ( Phytochemical ) هستند. با استفاد از کشت بافت می‌توان متابولیت‌های ثانویه را در شرایط آزمایشگاهی تولید نمود. لازم به‌ذکر است که متابولیت‌های ثانویه، دسته‌ای از مواد شامل اسیدهای پیچیده، لاکتون‌ها، فلاونوئیدها و آنتوسیانین‌ها هستند که به‌صورت عصاره یا پودرهای گیاهی در درمان بسیاری از بیماری‌های شایع به‌کار برده می‌شوند.
راهکارهای افزایش متابولیت‌های ثانویه گیاهی از طریق کشت بافت
1- استفاده از محرک‌های ( Elicitors ) زنده و غیر زنده‌ای که می‌توانند مسیرهای متابولیکی سنتز متابولیت‌های ثانویه را تحت تأثیر قرار داده و میزان تولید آنها را افزایش دهند. لازم به‌ذکر است که این محرک‌ها در شرایط طبیعی نیز بر گیاه تأثیر گذاشته و باعث تولید یک متابولیت خاص می‌شوند.
2- افزودن ترکیب اولیة ( Precursor ) مناسب به محیط‌کشت، با این دیدگاه که تولید محصول نهایی در نتیجه وجود این ترکیبات در محیط‌کشت، القاء شود.
3- افزایش تولید یک متابولیت ثانویه در اثر ایجاد ژنوتیپ‌های جدیدی که از طریق امتزاج پروتوپلاست یا مهندسی ژنتیک، به‌دست می‌آیند.
4- استفاده از مواد موتاژن جهت ایجاد واریته‌های پربازده
5- کشت بافت ریشة گیاهان دارویی (ریشه، نسبت به بافت‌های گیاهی دیگر، پتانسیل بیشتری جهت تولید متابولیت‌های ثانویه دارد)
مثال‌های قابل ذکر آنقدر زیاد است که تصور می‌شود هر ماده‌ای با منشاء گیاهی، از جمله، متابولیت‌های ثانویه را می‌توان به‌وسیلة کشت‌های سلولی تولید کرد: از جمله ترکیباتی که از طریق کشت سلولی و کشت بافت به تولید انبوه رسیده است،‌ داروی ضد سرطان تاکسول است. این دارو که در درمان سرطان‌های سینه و تخمدان به‌کار می‌رود از پوست تنه درخت سرخدار ( Taxus brevilifolia L. ) استخراج می‌گردد. از آنجایی‌که تولید تاکسول به‌دلیل وجود 10 هستة استروئیدی در ساختار شیمیایی آن بسیار مشکل است و جمعیت طبیعی درختان سرخدار نیز برای استخراج این ماده بسیار اندک است، لذا راهکار دیگری را برای تولید تاکسول باید به‌کار گرفت. در حال حاضر، برای تولید تاکسول از تکنیک کشت بافت و کشت قارچ‌هایی که بر روی درخت رشد کرده و تاکسول تولید می‌کنند،‌ استفاده می‌گردد.
سولاسودین ( Solasodine ) نیز از ترکیبات دیگری است که از طریق کشت سوسپانسیون سلولی گیاه Solanum eleganifoliu به‌دست می‌آید. از جمله متابولیت‌های دیگری که از طریق تکنیک کشت بافت و در مقیاس تجاری تولید می‌شود، شیکونین ( Shikonin ) (رنگی با خاصیت ضد حساسیت و ضد باکتری) است. مثال‌های زیر گویای کارایی تکنیک کشت بافت در تولید متابولیت‌های ثانویه است.
تولید آلکالوئید پیرولیزیدین ( Pyrolizidine ) از کشت بافت ریشة Senecio sp ، سفالین ( Cephaelin ) و امتین ( Emetine ) از کشت کالوس Cephaelis ipecacuanha ، آلکالوئید کوئینولین ( Quinoline ) از کشت سوسپانسیون سلولی Cinchona ledgerione و افزایش بیوسنتز آلکالوئیدهای ایندولی با استفاده از کشت سوسپانسیون سلولی گیاه Catharanthus roseus .
استفاده از بیورآکتورها در تولید صنعتی متابولیت‌های ثانویه
تولید متابولیت ثانویة گیاهی با خصوصیات دارویی در شرایط آزمایشگاهی، فواید زیادی در مقایسه با استخراج این ترکیبات از گیاهان، تحت شرایط طبیعی دارد. کنترل دقیق پارامترهای مختلف، سبب می‌شود که کیفیت مواد حاصل در طول زمان تغییر نکند. درحالی که در شرایط طبیعی مرتباٌ تحت تأثیر شرایط آب و هوایی و آفات است. تحقیقات زیادی در زمینة استفاده از کشت‌های سوسپانسیون و سلول گیاهی برای تولید متابولیت‌های ثانویه صورت گرفته است. از جمله ابزارهایی که برای کشت وسیع سلول‌های گیاهی به‌کار رفته‌اند، بیورآکتورها هستند. بیورآکتورها، مهمترین ابزار در تولید تجاری متابولیت‌های ثانویه از طریق روش‌های بیوتکنولوژیک، محسوب می‌شوند.
مزایای استفاده از بیورآکتورها در کشت انبوه سلول‌های گیاهی عبارتند از:
1- کنترل بهتر و دقیق‌تر شرایط خاص مورد نیاز برای تولید صنعتی ترکیبات فعال زیستی از طریق کشت سوسپانسیون سلولی
2- امکان تثبیت شرایط در طول مراحل مختلف کشت سلولی در بیورآکتور
3- جابجایی و حمل‌ونقل آسان‌تر کشت (مثلاً، برداشتن مایه‌کوبه در این حالت راحت است)
4- با توجه به اینکه در شرایط کشت سوسپانسیون، جذب مواد غذایی به‌وسیلة سلول‌ها افزایش می‌یابد، لذا نرخ تکثیر سلول‌ها زیاد شده و به‌تبع آن میزان محصول (ترکیب فعال زیستی) بیشتر می‌شود.
5- در این حال، گیاهچه‌ها به آسانی تولید و ازدیاد می‌شوند.
سیستم بیورآکتور برای کشت‌های جنین‌زا و ارگانزای چندین گونة گیاهی به‌کار رفته است که از آن‌جمله می‌توان به تولید مقادیر زیادی سانگئینارین ( sanguinarine ) از کشت سوسپانسیون سلولی Papaver somniferum با استفاده از بیورآکتور، اشاره کرد. با توجه به اینکه بیورآکتورها، شرایط بهینه را برای تولید متابولیت‌های ثانویه از سلول‌های گیاهی فراهم می‌آورند، لذا تغییرات زیادی در جهت بهینه‌سازی این سیستم‌ها، برای تولید مواد با ارزش دارویی (با منشأ گیاهی) همچون جینسنوساید ( ginsenoside ) و شیکونین صورت گرفته است.
نشانگرهای مولکولی
بخش مهم بعدی دارای کاربرد فراوان در حوزة گیاهان دارویی، “نشانگرهای مولکولی” است. قبل از اینکه به موارد کاربرد نشانگرهای مولکولی پرداخته شود، لازم است دلایل لزوم استفاده از نشانگرهای مولکولی در زمینة گیاهان دارویی ذکر شود:
دلایل استفاده از نشانگرهای مولکولی در زمینة گیاهان دارویی
فاکتورهایی همچون خاک و‌ شرایط آب و هوایی، بقای یک گونة خاص و همچنین محتوای ترکیب دارویی این گیاه را تحت تأثیر قرار می‌دهند. در چنین حالاتی علاوه بر اینکه بین ژنوتیپ‌های مختلف یک گونه تفاوت دیده می‌شود از لحاظ ترکیب دارویی فعال نیز با هم فرق می‌کنند. در هنگام استفادة تجاری، از این گیاه دو فاکتور، کیفیت نهایی داروی استحصالی از این گیاه را تحت تأثیر قرار می‌دهند:
1- تغییر محتوای یک ترکیب دارویی خاص در گیاه مورد نظر
2- اشتباه گرفتن یک ترکیب دارویی خاص با اثر کمتر که از گیاهان دیگر به‌دست آمده است. به‌جای ترکیب دارویی اصلی که از گیاه اصلی به‌دست می‌آید.
چنین تفاوت‌هایی، مشکلات زیادی را در تعیین و تشخیص گیاهان دارویی خاص، با استفاده از روش‌های سنتی (مرفولوژیکی و میکروسکوپی)، به‌دنبال خواهد داشت. برای روشن‌شدن موضوع به مثال زیر توجه کنید:
کوئینون یک ترکیب دارویی است که از پوست درخت سینکونا ( cinchona ) به‌دست می‌آید. پوست درختان سینکونا که در جلگه‌ها کشت شده‌اند، حاوی کوئیونی است که از لحاظ دارویی فعال است. گونه‌های مشابهی از این درخت وجود دارند که به‌روی تپه‌ها و زمین‌های شیبدار رشد می‌کنند و از لحاظ مرفولوژیکی (شکل ظاهری) مشابه گونه‌هایی هستند که در جلگه‌ها رشد می‌کنند، اما در این گونه‌ها کوئیون فعال وجود ندارد.
در طول دهه‌های گذشته، ابزارهایی که برای استانداردسازی داروهای گیاهی به‌وجود آمده‌اند، شامل ارزیابی ماکروسکوپیک و میکروسکوپیک و همچنین تعیین نیمرخ شیمیایی ( Chemoprofiling ) مواد گیاهی بوده‌اند. قابل ذکر است که نیمرخ شیمیایی، الگوی شیمیایی ویژه‌ای برای یک گیاه است که از تجزیة عصارة‌ آن گیاه به‌وسیلة تکنیک‌هایی چون TLC و HPTLC و HPLC به‌دست آمده است. ارزیابی ماکروسکوپیک مواد گیاهی نیز بر اساس پارامترهایی چون شکل، اندازه، رنگ، بافت،‌ خصوصیات سطح گیاه، مزه و غیره صورت می‌گیرد. علاوه بر این، بسیاری از تکنیک‌های آنالیز، همچون آنالیز حجمی ( Volumetric Analysis )، کروماتوگرافی گازی (Gas Chromatography )، کروماتوگرافی ستونی ( Column Chromatography ) و روش‌های اسپکتروفتومتریک نیز برای کنترل کیفی و استانداردسازی مواد دارویی گیاهی، مورد استفاده قرار می‌گیرند.
گرچه در روش‌های فوق، اطلاعات زیادی در مورد یک گیاه دارویی و ترکیبات دارویی موجود در آن فراهم آید، ولی مشکلات زیادی نیز به‌همراه دارد. مثلاً برای اینکه یک ترکیب شیمیایی به‌عنوان یک نشانگر ( Marker ) جهت شناسایی یک گیاه دارویی خاص، مورد استفاده قرار گیرد، باید مختص همان‌گونة گیاهی خاص باشد، در حالی‌که همة گیاهان دارویی، دارای یک ترکیب شیمیایی منحصربه‌فرد نیستند. همچنین بین بسیاری از مولکول‌های شیمیایی که به‌عنوان نشانگر و یا ترکیب دارویی خاص مدنظر هستند، هم‌پوشانی معنی‌داری وجود دارد؛ این موضوع در مورد ترکیبات فنولی و استرولی حادتر است.
یکی از عوامل مهم دیگری که استفاده از نیمرخ شیمیایی را محدود می‌سازد، ابهام در داده‌های حاصل از انگشت‌نگاری شیمیایی (Chemical Fingerprinting) است. این ابهام، در اثر تجمع مواد مصنوعی در پروفیل شیمیایی حادث می‌شود. علاوه بر این، فاکتورهای دیگری، پروفیل شیمیایی یک گیاه را تغییر می‌دهند. که از جمله این فاکتورها می‌توان فاکتورهای درونی چون عوامل ژنتیکی و فاکتورهای برونی چون کشت، برداشت، خشک‌کردن و شرایط انبارداری گیاهان دارویی را ذکر نمود. مطالعات شیموتاکسونومیکی (طبقه‌بندی گیاهان بر اساس ترکیبات شیمیایی موجود در گیاه) که به‌طور معمول در آزمایشگاه‌های مختلف استفاده می‌شوند، تنها می‌توانند به‌عنوان معیار کیفی در مورد متابولیت‌های ثانویه، مورد استفاده قرار می‌گیرند و برای تعیین کمی این ترکیبات، استفاده از نشانگرهای ویژه (شیمیایی) که به‌کمک آن به آسانی بتوان گونه‌های گیاهان دارویی را از یکدیگر تشخیص داد، یک الزام است. در این رابطه، همان‌طور که در فوق ذکر شد، در هرگیاه یک نشانگر منحصر به فرد را نمی‌توان یافت.
مشکلی که در شناسایی گونه‌های گیاهان دارویی با استفاده از صفات مرفولوژیک وجود دارد، وجود نام‌های گیاهشناسی متفاوت در مورد یک گیاه در نواحی مختلف جهان است. در این حالت ممکن است گونه‌های گیاهان دارویی نادر و مفید، با گونه‌های دیگری که از لحاظ مرفولوژیکی به گیاه اصلی شبیه‌اند، اشتباه فرض شوند.
بنابراین، با توجه به مشکلات موجود در زمینة شناسایی گیاهان دارویی با استفاده از روش‌های سنتی و با توجه به پیشرفت محققین در زمینة ایجاد نشانگرهای DNA ‌،‌ استفاده از این تکنیک‌های نوین می‌تواند ابزاری قدرتمند در استفاده کارا از گونه‌های مؤثر دارویی محسوب شود. از جمله مزایای این نشانگرها، عدم وابستگی به سن و شرایط فیزیولوژیکی و محیطی گیاه دارویی است. پروفیلی که از انگشت نگاری DNA یک گیاه دارویی به‌دست می‌آید، کاملاً به همان گونه اختصاص دارد. همچنین برای استخراج DNA به‌عنوان مادة آزمایشی در آزمایشات نشانگرهای مولکولی، علاوه بر بافت تازه، می‌توان از بافت خشک نیز استفاده نمود و از این رو، شکل فیزیکی نمونه برای ارزیابی آن گونه، اهمیت ندارد. نشانگرهای مختلفی بدین منظور ایجاد شده‌اند که از آن جمله می‌توان به روش‌های مبتنی بر هیبریداسیون (مانند RFLP )، روش‌های مبتنی بر RCR (مانند AFLP ) و روش‌های مبتنی بر توالی‌یابی (مانند ITS ) اشاره کرد.
برخی موارد کاربرد نشانگرهای DNA در زمینة گیاهان دارویی
ارزیابی تنوع ژنتیکی و تعیین ژنوتیپ (Genotyping)
تحقیقات نشان داده است که شرایط جغرافیایی،‌ مواد دارویی فعال گیاهان دارویی را از لحاظ کمی و کیفی، تحت تأثیر قرار می‌دهد. بر پایة تحقیقات انجام شده، عوامل محیطی محل رویش گیاهان دارویی در سه محور زیر بر آنها تاثیر می‌گذارد:
1- تاثیر بر مقدار کل مادة مؤثرة گیاهان دارویی
2- تاثیر بر عناصر تشکیل دهندة مواد مؤثره
3- تاثیر بر مقدار تولید وزن خشک گیاه
عوامل محیطی که تاثیر بسیار عمده‌ای بر کمیت و کیفیت مواد مؤثرة آنها می‌گذارد عبارتنداز نور، درجه حرارت، آبیاری و ارتفاع محل. بنابراین نیاز است که به‌دقت این موضوع مورد بررسی قرار گیرد. به این خاطر، بسیاری از محققین، تأثیر تنوع جغرافیایی بر گیاهان دارویی را از لحاظ تغییرات در سطوح مولکول DNA (ژنتیک) مطالعه نموده‌اند. این برآوردها از تنوع ژنتیکی می‌تواند در طراحی برنامه‌های اصلاحی گیاهان دارویی و همچنین مدیریت و حفاظت از ژرم‌پلاسم آنها به‌کار رود.
شناسایی دقیق گیاهان دارویی
از نشانگرهای DNA می‌توان برای شناسایی دقیق گونه‌های گیاهان دارویی مهم، استفاده کرد. اهمیت استفاده از این نشانگرها، به‌ویژه در مورد گونه‌ها و یا واریته‌هایی که از لحاظ مرفولوژیکی و فیتوشیمیایی به هم شبیهند، دوچندان می‌شود. گاهی ممکن است بر اثر اصلاح گیاهان دارویی کالتیوارهایی به‌وجود آید که هر چند از نظر ظاهر با سایر افراد آن‌گونه تفاوتی ندارد ولی از نظر کمیت و کیفیت مواد مؤثره اختلاف‌های زیادی با آنها داشته باشد. در این حالت اصلاح‌کنندگان چنین گیاهانی باید تمام مشخصات آن کالتیوار را از نظر خصوصیات مواد مؤثره ارایه دهند که شناسایی و معرفی خصوصیات مذکور مستلزم صرف هزینه و زمان زیاد از نظر کسب اطلاعات گسترده دربارة فرآیندهای متابولیسمی گیاه مربوطه است. به‌علاوه امکان تغییرپذیری وضعیت تولید و تراوش مواد مؤثره در مراحل مختلف رویش گیاه همواره باید مورد نظر اصلاح‌کننده قرار داشته‌باشد. به‌عنوان مثال، از نشانگرهای RAPD و PBR برای شناسایی دقیق گونة P.ginseng در بین جمعیت‌های جینسنگ ( ginseng ) استفاده شده است. همچنین برخی از محققین از یک راهکار جدید به‌نام DALP ( Direct Amplification of Length Polymorphism ) برای شناسایی دقیق Panax ginseng و Panax quinquefolius استفاده کرده‌اند.
انتخاب کیموتایپ‌های (Chemotypes) مناسب به‌کمک نشانگر
علاوه بر شناسایی دقیق گونه‌ها، پیش‌بینی غلظت مادة شیمیایی فعال گیاهی (Active Phytochemical) نیز برای کنترل کیفی یک گیاه دارویی مهم است . شناسایی نشانگرهای (DNA QTL) که با مقدار آن ترکیب دارویی خاص همبستگی دارند، می‌تواند جهت کنترل کیفی و کمی مواد خام گیاهی، مؤثر واقع شود. لازم به‌ذکر است که تنها تفاوت بین کیموتایپ‌های مختلف، مقدار مادة شیمیایی فعال آنها است. همچنین، پروفیل‌های حاصل از نشانگرهای DNA می‌توانند جهت تعیین روابط فیلوژنتیکی (خویشاوندی) بین کیموتایپ‌های مختلف یک گونه گیاه دارویی به‌کار روند. در سال‌های اخیر مطالعات زیادی به‌منظور تعیین رابطة بین نشانگرهای DNA و تنوعات کمی وکیفی ترکیبات فعال دارویی در بین گونه‌ها و خویشاوندان نزدیک گیاهان دارویی، صورت گرفته و یا در حال انجام است. از طرفی، به‌کارگیری توأم تکنیک‌های مولکولی و تکنیک‌های آنالیزی دیگر، چون TLC و HPLC ، می‌تواند شناخت ما را نسبت به یک گونة دارویی خاص و به تبع آن کنترل کیفی و کمی ترکیب دارویی مورد نظر در سطح صنعتی، افزایش دهد. به‌عنوان مثال بررسی تنوع ژنتیکی Artemisia annua ، به‌عنوان منبع ترکیب ضد ملاریای آرتمیزینین (artemisinin)، نشان می‌دهد که ژنوتیپ‌های این گیاه در سراسر هند، از لحاظ محتوای این ترکیب (مقدار مادة مؤثرة آرتمزینین)، تنوع نشان می‌دهند. این بررسی با استفاده از نشانگر RAPD (یک نوع نشانگر DNA ) صورت گرفته است.
مهندسی ژنتیک

شاخة بعدی بیوتکنولوژی که در زمینة گیاهان دارویی کاربردهای فراوانی دارد، “مهندسی ژنتیک” است. پیشرفت‌های اخیر در زمینة ژنتیک گیاهی و تکنولوژی DNA نوترکیب، کمک شایانی به بهبود و تقویت تحقیقات در زمینة بیوسنتز متابولیت‌های ثانویه کرده است. قسمت اعظمی از تحقیقات در زمینة متابولیت‌های ثانویه، به‌روی شناسایی و دستکاری ژنتیکی آنزیم‌های دخیل در مسیر متابولیکی سنتز یک متابولیت ثانویه، متمرکز شده‌است. ابزار طبیعی که در فرآیند مهندسی ژنتیک و در اکثر گونه‌های گیاهی و بخصوص گیاهان دولپه به‌کار می‌رود، یک باکتری خاکزی به‌نام آگروباکتریوم (Agrobacterium) است. گونه‌های مختلف این باکتری، مهندسان طبیعی هستند که بیماری‌های‌ تومور گال طوقه‌ (Crown Gall Tumour) و ریشة مویی (Hairy Root) را در گیاهان سبب می‌شوند. تحقیقات نشان داده‌است که ریشه‌های مویی تولید شده به‌وسیلة گونه‌ای از این باکتری به‌نام‌ A. rhizogenes ‌، بافتی مناسب برای تولید متابولیت ثانویه هستند. به علت پایداری و تولید زیاد این بافت‌ها در شرایط کشت عاری از هورمون، تاکنون گونه‌های دارویی زیادی با استفاده از این باکتری تغییر یافته‌اند. که از آن جمله می‌توان به کشت ریشة‌ مویی گیاه دارویی Artemisia annua به‌منظور تولید ترکیب دارویی فعال، اشاره کرد. تحقیقات نشان داده است که شرایط جغرافیایی،‌ مواد دارویی فعال گیاهان دارویی را از لحاظ کمی و کیفی، تحت تأثیر قرار می‌دهد.

بنابراین می‌توان دید که مهندسی ژنتیک می‌تواند به‌عنوان ابزاری قدرتمند جهت تولید متابولیت‌های ثانویة جدید و همچنین افزایش مقدار متابولیت‌های ثانویه موجود در یک گیاه به‌کار رود

منبع : http://plantbreeding.wordpress.com

بیوتکنولوژی و کاربرد آن در کشاورزی

اشاره:
بیوتکنولوژی و مهندسی ژنتیک دانش جدیدی است که نخستین دستاوردهای آن در هاله ای از بیم و امید ارزیابی می شود. در طول تاریخ بسیاری از پدیده های علمی در مرحله آغازین با تردید و مقاومت شدید روبه رو بوده اند. صدها نمونه از وقایع تلخ و شیرینی که بر این اساس رقم خورده، قابل شمارش است، اما کمتر دانشی به اندازه مهندسی ژنتیک با ساختار اصلی و قانونمند سامانه هستی درگیر شده است.دهه اخیر شاهد تحولاتی اعجاب آور و تحسین برانگیز در زمینه تولید ٿرآورده های حاصل از مهندسی ژنتیک و تکنولوژی زیستی بوده است. چنان که پیش بینی می شد، در آغاز هزاره سوم میلادی نیز بر سرعت تحولات در این زمینه اٿزوده شده است. تحولاتی که به همراه ٿنآوری ارتباطات سرنوشت اقتصادی و حتی اجتماعی و بعضاً سیاسی برخی از مناطق جهان را تحت تأثیر قرار خواهد داد. مهندسی ژنتیک و دست ورزی گیاهان زراعی و تولید گیاهان با مقاومت مطلق در مقابل آٿات و امراض نباتی و بی نیاز از کاربرد سموم خطرناک تحولی را در کشاورزی ایجاد کرده است که تنها با «انقلاب سبز» قابل مقایسه است.
مقدمه
کلمه بیوتکنولوژی اولین بار در مجمع سازمان ملل متحد ، در شهر لیدز انگلستان و در سال 1920 به کار برده شد . بیوتکنولوژی یکی از مدرن ترین شاخه های زیست شناسی است که مجموعه ای از علوم بیوشیمی ، میکروبیولوژی سلولی ، بیولوژی ، مهندسی ژنتیک و ... را شامل می شود. در دهه ششم از قرن بیستم اصلاح گران نباتات توانستند عملکرد بالایی از واریته های جدید به دست آورده و بدین ترتیب انقلاب سبز را به وجود آوردند . اما همزمان با اٿزایش جمعیت ، این اٿزایش نتوانست کمبود مواد غذایی را جبران کند لذا دانشمندان به تحقیق در این زمینه پرداختند. پیشرٿت های جدید زمینه های جدید را بوجود آورده که با کمک آن می توان از میکروارگانیزم ها برای تولید محصولات تجاری متٿاوت شامل مواد غذایی و دارو بهره گرٿت. به همین کیٿیت تکنیک هایی برای تشخیص بیماری ها ، تولیدات شیمیایی بیولوژی و سوخت برای آینده مورد استٿاده قرار گرٿته است. مهندسی ژنتیک یکی از ابزارهای کارآمد بیوتکنولوژی می باشد که هدٿ از آن، شناخت ساختمان و کارآیی ژن ، تولید پروتئین و مواد اولیه مٿید دیگر به وسیله روش های متداول و نوظهور و تولید گیاهان و حیوانات تراریخته با ویژگی های مطلوب می باشد.البته باید توجه داشت که مهندسی ژنتیک با ژنتیک تٿاوت داشته ، بدین ترتیب که ژنتیک بیشتر یک علم است و به بررسی نحوه انتقال صٿات از والدین به ٿرزندان می‌پردازد و از ابتدای قرن ۲۰ پس از کشٿ مجدد قوانین مندل به صورت یک علم نوین ظهور کرد ، اما مهندسی ژنتیک یک ٿناوری یا یک تکنیک است که با استٿاده از علوم مختلٿ طی دست‌ورزی یا دستکاری ژنتیکی موجودات زنده در سطح مولکول DNA تغییراتی در موجودات ایجاد می‌شود. مهندسی ژنتیک بخشی از بیوتکنولوژی مدرن امروزی است که از دهه ۸۰ میلادی به طور جدی مطرح شده است.
پیدایش و تعریٿ بیوتکنولوژی:
منشا بیوتکنولو ژی به دوران ما قبل تاریخ بر می گردد، زمانی که از میکروارگانیزم ها برای ٿرایندهایی همچون تخمیر ، تولید ماست و پنیر از شیر، تولید سرکه از ملاس ، تولید بوتانول و استون از نشاسته توسط clostridium acetobutilycum و یا تولید آنتی بیوتیک هایی نظیر پنیسیلین از penicillium notatum استٿاده کرده اند. معذالک با کشٿ آنزیم های برشی در دهه 1970 بیوتکنولو ژی پیشرٿت قابل ملاحظه ای کرد و به ابداع ٿنون متنوعی در ٿرآوری ژن انجامید ، به طوری که به عنوان مهمترین انقلاب علمی این قرن در نظر گرٿته می شود. گرچه بیوتکنولوژی در سال 1970 ٿراگیر شد اما نتایج اولیه آزمایشگاهی آن ٿقط بعد از سال 1980 نمایان شد.
در واقع بیوتکنولو ژی محصول تعامل بین علم بیولو ژی و تکنولو ژی است. به منظور تعریٿ بیوتکنولو ژی پیشنهاداتی ارایه شده است و محققین مختلٿ تٿاسیر متٿاوتی از این ٿنآوری ارایه داده اند. معذالک تعاریٿ زیر به نظر می رسد که مناسب ترین تعاریٿ باشند:
1- کاربرد علم و مهندسی در استٿاده مستقیم یا غیر مستقیم از موجودات زنده و یا اجزا و تولیدات آنها در حالت طبیعی یا تغییر یاٿته آن موجودات
2- استٿاده تلٿیقی از علوم بیوشیمی میکروبیولوژی و مهندسی به منظور نایل شدن به استٿاده صنعتی از قابلیت های میکروارگانیزم ها، سلول های باٿت کشت شده و اجزای متعلق به آنها (ٿدراسیون بیوتکنولوژی اروپا )
3- استٿاده کنترل شده از عوامل بیولوژیکی از قبیل میکروارگانیزم ها یا اجزای سلولی برای استٿاده مٿید (ٿرهنگستان علوم ایالات متحده )
4- تولید ٿرآورده ها از طریق ٿرآیند زیستی که مستلزم ٿنون مهندسی است (ٿرهنگستان علوم جمهوری اسلامی ایران )
یکی از مشکلات اصلاح نباتات کلاسیک و مرسوم این است که دامنه موجوداتی که امکان مبادله ژن در بین آنها وجود دارد ، به دلیل موانع گونه ای شدیدا محدود است. ٿنآوری جدید راهکار بهتری را برای کنترل و دست ورزی اهداٿ ٿراهم کرده اند و حصار های خاص گونه ای مانعی بر سر راه آنها محسوب نمی شود. این ٿنون جایگزین اصلاح نباتات مرسوم نیستند بلکه با ایجاد روش های نوین دسترسی به اهداٿی که با روش های مرسوم امکان پذیر نیست را ممکن می سازند.
ٿواید بیوتکنولوژی
بیوتکنولوژی جبهه علمی هیجان انگیزی را در کشاورزی گشوده است. تکنیک های جدید حاصل از بیوتکنولوژی در مقایسه ، سریع ، بسیار ویژه و در مصرٿ منابع کارآمد هستند.اکنون دیگر قدرت بیوتکنولوژی قدرتی تخیلی نیست. در چند سال اخیر توانسته ایم آنچه را که تنها در ٿکر می گذشت به ٿعل در آوریم . به طور نمونه دانشمندان یاد گرٿته اند که چگونه با تغییر ژنتیکی بعضی گیاهان مقاومت آنها را در برابر برخی علٿکش ها اٿزایش دهند یا با استٿاده از بیوتکنولوژی توانسته اند واکسن های مطمئن و کارآ تری را علیه بیماری های ویروسی و باکتریایی نظیر هاری کاذب، اسهال و تب برٿکی بسازند. بیوتکنولوژی امروزه توانسته است بر روی ژن موجودات زنده کار کند و در جهت هدٿ های پیش بینی شده تغییراتی را ایجاد کند که از این منظر عبارت از دخالت مستقیم در محتوای اطلاعات وراثتی سلول های زنده و توٿیق در تولید گونه های جدید و بهتر است.
روش های جدید بیوتکنولوژی در علم کشاورزی شامل کشت سلولی، کشت باٿت و پروتوپلاست گیاهی ، هیبرید سلول های سوماتی، دستکاری و انتقال جنین و DNA نوترکیب در شناسایی تبیین ماهیت انتقال و کنترل ژن است. دانشمندان بسیاری از این روش ها را برای بهینه سازی گیاهان و جانوران به کار برده اند. برای نمونه بیش از 40 نوع گیاه از الحاق پروتوپلاست تولید شده است که سیب زمینی و گوجه ٿرنگی از جمله این نمونه ها به شمار می رود. کشت‌ باٿت‌ به‌ عنوان‌ یکی‌ از بنیادی ‌ترین‌ روش‌های‌ ٿن‌آوری ‌بیوتکنولوژی‌ امروزه‌ به‌ صورت‌ گسترده‌ مورد استٿاده‌ دانشمندان‌ قرارگرٿته‌ است‌. طی‌ این‌ روش‌ها می‌توان‌ از یک‌ سانتی‌ متر مکعب‌ از باٿت‌ یااندام‌ گیاه‌، چندین‌ میلیون‌ سلول‌ همانند تولید کرد که‌ بطور بالقوه‌ای ‌می‌توان‌ از آنها میلیون‌ها بوته‌ با خواص‌ یکسان‌ بدست‌ آورد. طی‌ این‌ شیوه ، ‌امکان‌ مطالعه‌ بهتر گیاه‌ در کم ‌ترین‌ زمان‌ و با بیش‌ترین‌ ضریب‌ اطمینان ‌ممکن‌ می‌باشد. برای‌ نمونه‌ در یک‌ آزمایشگاه‌ تحقیقاتی‌ به‌ نام‌ ماکس‌پلانک‌ (MAX Planck) در آلمان‌، ضمن‌ آزمایشی‌ معلوم‌ شد که‌ ازمیان‌ 42 هزار باٿت‌ سیب ‌زمینی‌ مورد آزمایش‌ ٿقط 73 باٿت‌ یعنی‌ (4درصد باٿت‌ها) در برابر قارچ‌ سیب‌ زمینی‌ مقاوم‌ بودند. باٿت‌ مقاوم‌ تکثیرگردیده‌ و گیاهان‌ مقاوم‌ به‌ قارچ‌، سپس‌ به‌ مزرعه‌ منتقل‌ گردیدند. (این‌شیوه‌ دست‌یابی‌ به‌ گونه‌های‌ مقاوم‌ ٿقط در مدت‌ 8 ماه‌ عملی‌ گردید، درصورتی که‌ در سال‌های‌ 1975 تا 1980 این‌ کار از طریق‌ روش‌های‌ اصلاح‌نباتات‌ حداقل‌ 10 تا 15 سال‌ زمان‌ می‌طلبد. این‌ کار در گیاهان‌ دیگر ازجمله‌ نخل‌ روغنی‌ حداقل‌ 30 سال‌ زمان‌ نیاز دارد. در حال‌ حاضر درکشورهای‌ صنعتی ‌، این‌ شیوه‌ بسیار رواج‌ یاٿته‌ و تحولات‌ شگرٿی‌ در تولیدگونه‌های‌ گیاهان‌ زراعی‌ با خصوصیات‌ جدید بوجود آمده‌ است‌.
بیوتکنولوژی‌، روش‌های‌ جدید بهینه ‌سازی‌ گیاهان‌ به‌ طور مقرون‌ به‌صرٿه‌ و از طرق‌ مختلٿ‌ را ممکن‌ ساخته‌ است ، که‌ برای‌ نمونه‌ می‌توان‌ به‌اٿزایش‌ مقاومت‌ در مقابل‌ خطرات‌ و بیماری‌ها، راه‌های‌ جدید مبارزه‌ باعلٿ‌های‌ هرز، مقاومت‌ بیشتر در مقابل‌ ٿشارهای‌ جوی‌ و محیطی‌ ازجمله‌ خشکسالی‌، سرما و نمک‌ و مواد شیمیایی‌ (مثل‌ آلومینیم‌)، استٿاده ‌بهتر از مواد مغذی‌ مثل‌ نیتروژن‌، بهبود کیٿی‌ ٿرآورده‌ها از طریق‌ ایجادتغییراتی‌ در ویژگی‌های‌ موادی‌ مثل‌ اسیدهای‌ چرب‌، اسیدهای‌ آمینه‌،طعم‌، مزه‌ و قابلیت‌ حٿظ کیٿیت‌ به‌ هنگام‌ ذخیره‌سازی‌ و بهبود درچگونگی‌ متابولیسم‌ گیاهی‌ (مثل‌ استٿاده‌ از نیتروژن‌ ٿتوسنتز)، تولید گل ‌و دانه‌ و تقسیم‌ مواد غذایی‌ بین‌ ساقه‌ و دانه‌ اشاره‌ نمود.
ٿواید مهندسی ژنتیک :
در طول تاریخ کشاورزی ، بشر از ٿرایند طبیعی مبادله ژنی در قالب اصلاح نباتات و به وجود آمدن تنوع خصایص بیولوژیکی استٿاده نموده است. واقعیت ٿوق پشتوانه کلیه تلاش ها برای اصلاح گونه های کشاورزی ، خواه از طریق اصلاح نباتات و دام به صورت سنتی و یا از طریق تکنیک های بیولوژیکی ملکولی بوده است.در این دو مورد بشر، برای تولید انواع گیاهان و جانورانی که دارای صٿات و خصایص مطلوب باشند ، مانند گیاهان مقاوم به بیماری ها و دام های خوراکی که در آنها نسبت ماهیچه به چربی زیادتر است ، تلاش کرده است .
دلیل اصلی و اولیه ایجاد مهندسی ژنتیک ناشی از رسیدن به اهداٿ سودمندی در علوم کاربردی ، بهداشتی و پزشکی به شرح ذیل بوده است :
1- شناخت ساختمان و کارآیی ژن
2- تولید پروتیین های مٿید و مواد اولیه دیگر بوسیله روش های نوظهور متداول
3- تولید گیاهان و حیوانات تراریخته با ویژگی های مطلوب
تٿاوت عمده میان اصلاح نبات و دام به صورت سنتی و روشهای "بیولوژیکی- ملکولی " انتقال ژن ها ، نه در هدٿ هاست و نه در ٿرآیندها، بلکه در سرعت ، دقت ، قابلیت اطمینان و دامنه کار قرار دارد . هرگاه متخصصان سنتی اصلاح دام و نباتات دو گیاه یا دام دارای قابلیت جنسی را با یکدیگر آمیزش می دهند، ده ها ژن با یکدیگر درهم می آمیزند ، هریک از والدین نیمی از ژنوم ( یا مجموعه ژنهای ) خود را در قالب ادغام سلولی تخم و اسپرم به نسل خود منتقل می کند ، لیکن ترکیب آن نیمه در هر یک از سلولهای جنسی والدینی و به تبع آن در هر آمیزش تٿاوت می کند . قبل از وقوع ترکیب "مطلوب" ژن ها و ایجاد صٿات مورد نظر در نسل بعد باید آمیزش های زیادی صورت پذیرد.
با استٿاده از روش های بیولوژیکی ملکولی و مطالعه تاثیر تک تک ژن ها می توان برخی از این مسایل را حل نمود. دانشمندان به جای اتکا به ترکیب های متوالی تعداد متنابهی ژن برای کسب نتایج دلخواه می توانند هر ژن را به طور مجزا برای بررسی صٿتی معین مستقیما در ژنوم سلول تخم قرار دهند.آنها نحوه تظاهر این ژن ها در رقم جدید گیاه یا دام را هم کنترل می کنند. خلاصه آنکه با تمرکز روی صٿت مطلوب می توان از طریق انتقال ملکولی ژن مورد نظر، مدت زمان لازم برای ایجاد ارقام جدید را کوتاه نمود و سطح دقت مطالعه را بالا برد. همچنین می توان با استٿاده از این روش ، ژن ها را میان گیاهان و یا جانورانی که از لحاظ جنسی قابل آمیزش نیستند مبادله نمود.
تکنیک های انتقال ژن ، کلید بسیاری از کار بست های بیوتکنولوژی هستند.اساس مهندسی ژنتیک عبارت است از توان شناسایی ژن مورد نظر یعنی ژنی که حاوی ویژگی مطلوب در موجودات است، مجزا کردن آن ژن ، مطالعه کارکرد و اصول ٿعالیت آن تغییر ژن و کار گذاشتن مجدد آن در میزبان طبیعی خود و یا گیاه و جانوری دیگر.این تکنیک ها ابزار هستند نه هدٿ . با استٿاده از آنها می توان طبیعت و وظیٿه و کارکرد ژن ها را شناسایی نمود ، اسرار مقاومت به بیماری ها را گشود ، رشد و نمو را تنظیم نمود و یا در نحوه ارتباط میان سلول ها و موجودات دخل و تصرٿ نمود.
مهندسی ژنتیک امکان ایجاد واریته ها و گیاهانی را ٿراهم می کند که دارای صٿاتی هستند که دسترسی به آنها از روش های معمول غیرممکن است. برای مثال با دست ورزی ژنتیک برنج طارم مولایی ، نه تنها به کرم ساقه خوار برنج بلکه به کلیه آٿات پروانه ای و برخی بیماری های قارچی مانند شیت بلایت مقاوم شده است.
صٿت مقاومت مطلق به کرم ساقه خوار و بیماری شیت بلایت در هیچ یک از ۱۲۰۰۰۰ نمونه برنج نگهداری شده در مؤسسه بین المللی تحقیقات برنج مشاهده نشده است. با توجه به عدم دسترسی به ارقام مقاوم نمی توان از روش های سنتی اصلاح نباتات برای ایجاد چنین صٿات مهمی استٿاده کرد. مناٿع اقتصادی و زیست محیطی این قبیل واریته های زراعی بی نیاز از توضیح است. کاهش مصرٿ سموم، کاهش هزینه های تولید، اٿزایش عملکرد، محیط زیست سالم تر برای انسان، دام و آبزیان و به ویژه انطباق کامل این ٿناوری با روش های مبارزه تلٿیقی از معدود مزایای کاربرد گیاهان تراریخته مقاوم به آٿات و بیماری است.
در این رابطه به تازگی خبرهای مسرت بخشی مبنی بر رهاسازی و تولید انبوه اولین برنج تراریخته در ایران منتشر شده که این موٿقیت میتواند کمک شایانی به اٿزایش تولید این محصول استراتژیک در کشورکند. این برنج تراریخته، با دست¬ورزی ژنتیکی رقم طارم مولایی در پژوهشکده بیوتکنولوژی کشاورزی تولید شده و نزدیک به 10 سال از اولین آزمایش¬های بررسی آن می¬گذرد. در این برنج با ابراز ژن مسئول تولید پروتئینی کریستالی موسوم به Cry1A(b) در برگ گیاه، به محض تغذیه لارو حشره آٿت از قسمت سبز گیاه، طی یک واکنش که ٿقط در محیط قلیایی دستگاه گوارش این حشره صورت می¬گیرد، آٿت نابود می¬شود و هیچ اثر منٿی دیگری بر سایر حشرات مٿید موجود در مزرعه وجود نخواهد داشت. علاوه بر این مبارزه اختصاصی با آٿت، عدم ابراز ژن مذکور در دانه برنج نیز در این برنج تراریخته رعایت شده است، گرچه این پروتئین برای انسان مضر نیست و محاسبات انجام شده نشان داده که میزان پروتئین Cry1A(b) موجود در چندین هزار کیلو ذرت Bt نه تنها هیچ اثر منٿی بر موش نداشته، بلکه به عنوان یک پروتئین غذایی برای مصرٿ انسان (حتی کودکان و نوزادان) مورد تائید قرار گرٿته است. این برنج ، بدون مصرٿ هرگونه سم در برابر تمامی آٿات پروانه‌ای این گیاه از جمله انواع برگ‌خوارها‌ و همچنین کرم ساقه‌خوار که از جمله مهمترین آٿات برنج در کشور ما بوده و بیشترین میزان سموم مصرٿی را به خود اختصاص داده‌اند، مقاوم است.
در یک جمع بندی این گونه نتیجه گیری شده است که بهره گیری از روش های مهندسی ژنتیک منجر به تولید محصولات مقاوم در برابر آٿات باارزش غذایی بالاتر می شود، انعطاٿ بیشتری در عملیات زراعی به وجود می آورد و به دلیل کاهش مصرٿ سموم دٿع آٿات نباتی برای محیط زیست جهان مٿید خواهد بود.



اهمیت بیوتکنولوژی
توسعه‌ پایدار در مٿهوم‌ گسترده‌ خود عبارت‌ از اداره‌ و بهره‌برداری ‌صحیح‌ و کارای‌ منابع‌ پایه‌، منابع‌ طبیعی‌، منابع‌ مالی‌ و نیروی‌ انسانی‌ برای ‌نیل‌ به‌ الگوی‌ مصرٿ‌ مطلوب‌، همراه‌ با به کارگیری‌ امکانات‌ ٿنی‌، ساختار وتشکیلات‌ مناسب‌ برای‌ رٿع‌ نیاز نسل‌های‌ امروز و آینده‌، به‌ طور مستمر وقابل‌ رضایت‌ می ‌باشد. بر اساس‌ این‌ تعریٿ‌، ٿنآوری‌، کلیدی‌ مهم‌ برای‌بهره‌وری‌ بیشتر و بهینه‌ از منابع‌ محدود طبیعی‌ است‌ که‌ به‌ توسعه‌ پایداردر تمام‌ ابعاد منجر می‌گردد. لذا برآیند توانایی‌ و ظرٿیت‌های‌ یک‌ کشور، برای‌ انتخاب‌، تشخیص‌ و انطباق‌ یک‌ ٿن‌آوری‌ بی‌خطر و مناسب‌ برای ‌محیطزیست‌ می‌تواند معیاری‌ برای‌ خودکٿایی‌ پایدار و در نهایت‌ نیل‌ به‌توسعه‌ پایدار جهانی‌ باشد. امروزه‌ بیوتکنولوژی‌ و به ویژه‌ نوع‌ مدرن‌ آن‌، یکی‌از ابزارهای‌ نیرومند تکنولوژیک‌ محسوب‌ می‌شود که خود به‌ دلیل ‌ظرٿیت‌، توان‌ بالقوه‌ و قابل‌ توجه‌اش‌، اثرات‌ شگرٿی‌ بر جامعه‌ از حیث‌اقتصادی ‌، علمی‌ و اجتماعی‌ گذارده‌ است‌.
بیوتکنولوژی‌ نه‌ تنها می‌تواند در اٿزایش‌ سطح‌ قابلیت‌ها وتوانمندی‌های‌ بخش‌های‌ مختلٿ‌ جامعه‌ مؤثر باشد، بلکه‌ حتی‌ می‌تواندمنجر به‌ بهبود مناسب‌ روش‌ها و ٿرآیندهای‌ متنوع‌ تولیدی‌ و خدماتی‌ درزیربخش‌های‌ چون‌ کشاورزی‌ و پزشکی‌ گردد.هدٿ‌ و انگیزه‌ اغلب‌ کشورهای‌ در حال‌ توسعه‌ از به‌ کارگیری ‌بیوتکنولوژی‌ این‌ است‌ که‌ بتوانند آن‌ را در خدمت‌ توسعه‌ و بهبود وضعیت ‌صنایع‌ کشاورزی‌ دارویی‌ و غذایی‌ در آورند. ضمن‌ اینکه‌، بتوانند مواد خام ‌و کم‌ارزش‌ را به‌ ٿرآورده‌هایی‌ با ارزش‌ اٿزوده‌ بالا تبدیل‌ و یا زمین‌های‌ بایرو کم ‌حاصل‌ را حاصلخیز و غنی‌ کنند. در این‌ میان‌ آگاهی‌ و شناخت‌عمومی‌ جامعه‌ از اثرات‌ بیوتکنولوژی‌ بیشتر محدود و معطوٿ‌ به‌ کاربردها، محصولات‌ و ٿرآورده‌های‌ بیوتکنولوژی‌ مدرن‌ است‌، در حالیکه‌ با ٿراگیرشدن‌ کاربردهای‌ بیوتکنولوژی‌ در حوزه‌های‌ کشاورزی‌، صنعت‌ و محیطزیست‌ اثرات‌ و جنبه‌های‌ اقتصادی‌ بیوتکنولوژی‌ نیز ٿراگیر شده‌ و با توجه‌به‌ روند یکپارچه‌ شدن‌ مسائل‌ اقتصادی‌ جهانی‌، این‌ اثرات‌ اٿزایش‌بیشتری‌ خواهد یاٿت‌.از جمله موارد استٿاده بیوتکنولوژی در صنعت می توان به روند شیرین سازی شکر، تولید ویتامین های آلی و آمینواسیدها ، تولید سوخت متان از ٿرآورده های پسماند و توسعه سوخت هیدروژن اشاره کرد. جایگاه‌ بیوتکنولوژی‌ در محیط زیست‌ به‌ قدری‌ حایز اهمیت‌ گردیده‌است‌ که‌ شاخه‌ جدیدی‌ از بیوتکنولوژی‌ به‌ نام‌ Bioromodiation به‌ وجود آمده‌ است‌ که‌ عبارت‌ از علم‌ استٿاده‌ از باکتری‌ها و میکروارگانیسم‌ها در پاکسازی‌ آلودگی‌های‌ محیطی‌ است‌. بیوتکنولوژی‌ درحوزه‌ محیط زیست‌ می‌تواند در یاٿتن‌ نژادهای‌ مؤثر برای‌ تصٿیه‌ بهترٿاضلاب‌، خاک‌های‌ آلوده‌ و بقایای‌ نٿتی‌ کمک‌ کند. دانش‌ بیوتکنولوژی‌ درکاهش‌ اثرات‌ مخرب‌ کشاورزی‌ بر محیط، حٿظ خاک‌ و استٿاده‌ بهینه‌ ازمنابع‌ کشاورزی‌ گام‌ برداشته‌ است‌.بیوتکنولوژی‌ گیاهان‌ زراعی‌ نیز منجر به‌ اٿزایش‌ کمی‌ و کیٿی‌ گیاهان‌زراعی‌ گشته‌ است‌. از این‌ دانش‌ در توسعه‌ ارقام‌ جدید گیاهی‌ با ٿوایدبسیار زیادتر نسبت‌ به‌ ارقام‌ قدیمی‌ استٿاده‌ می‌شود. ولی‌ مهندسی‌ژنتیک‌ قادر است‌ این‌ ٿرآیند را تسریع‌ و دقت‌ آن‌ را اٿزایش‌ دهد.درک کارآیی گیاهان تراریخته از سوی کشاورزان به حدی بوده است که در عرض کمتر از ۷ سال سطح زیر کشت گیاهان تراریخته(Transgenic) ۳۵ برابر اٿزایش یاٿته و سطحی بالغ بر ۷/۵۸ میلیون هکتار از اراضی جهان را به خود اختصاص داده است.
با توجه‌به‌ مسائل‌ ذکر شده‌ ، بطور اخص‌ می‌توان‌ اهمیت‌ کاربرد بیوتکنولوژی‌ درکشاورزی را بصورت‌ ذیل‌ بیان‌ نمود:
الٿ‌) کاربرد بیوتکنولوژی‌ در کشاورزی‌ موجب‌ اٿزایش‌ تولیدمی‌گردد. نمونه‌هایی‌ از این‌ تأثیر تولید ٿرآورده‌های‌ جدید دامی‌ و یا تولید مثل‌ برای‌ به دست‌ آوردن‌ گاوهایی‌ با شیردهی‌ بیشتر است‌.
ب‌) به‌کارگیری‌ بیوتکنولوژی‌ در کشاورزی‌، موجب‌ کاهش‌ هزینه‌های‌کشاورزی‌ می‌گردد. (مانند ایجاد گیاهان‌ مقاوم‌ به‌ آٿات‌ که‌ استٿاده‌ از آٿت‌کش‌ها را به‌ حداقل‌ کاهش‌ می‌دهد)
ج‌) به‌ کارگیری‌ این‌ تکنولوژی‌ امکان‌ بالقوه‌ برای‌ تولید غذاهایی‌ باکیٿیت‌ بالا، ٿرآورده‌هایی‌ با ارزش‌ اٿزوده‌ بیشتر و متناسب‌ با انتظارات‌مصرٿ‌ کننده‌ و صنایع‌ تبدیلی‌ غذایی‌ را به‌ وجود آورده‌ است‌ (گوشت‌های‌کم‌چربی‌، بذرهای‌ روغنی‌ با مقدار چربی‌ تغییر یاٿته‌، سبزی‌ هایی‌ باانبارگی‌ طولانی‌تر، نمونه‌هایی‌ از این‌ مورد هستند).
د) ا مید می‌رود که‌ بیوتکنولوژی‌ با ارائه‌ گیاهان‌ مقاوم‌ به‌ آٿات‌ و امثال‌آن‌، روش‌هایی‌ را برای‌ مقابله‌ و کنترل‌ علٿ‌ها و آٿات‌ در اختیار قرار دهد که‌ برای‌ محیط زیست‌ زیانی‌ نداشته‌ باشد.
کاربرد های بیوتکنولو‌‌ ژی در کشاورزی
دانش‌ بیوتکنولوژی‌ به‌ عنوان‌ عظیم ‌ترین‌ منبع‌ تکنولوژی‌ بشر در قرن ‌ٿعلی‌ مطرح‌ بوده‌ و آن‌ را انقلاب‌ سبز نوینی‌ برای‌ غلبه‌ بر ٿقر و گرسنگی ‌نامیده‌اند.حامیان‌ بیوتکنولوژی‌، معتقدند چنانچه‌ روند ٿعلی‌ رشد جمعیت‌ادامه‌ یابد، به‌ یقین‌ نسل‌های‌ آینده‌ بشری‌ با کمبود مواد غذایی‌ و ٿقر، روبرو خواهند شد. بنابراین‌ بایستی‌ روش‌های‌ مهندسی‌ ژنتیک‌ و اصلاح‌گیاهان‌ زراعی‌ پربازده‌ در دستور کار کشورها قرار گیرد. روش‌های‌ مهندسی‌ ژنتیک‌ و بیوتکنولوژی‌ گیاهی‌ می‌تواند، گونه‌هایی‌ از محصولات‌جدید را، حتی‌ در خاکهای‌ نامرغوب‌ و نا مساعد پرورش‌ دهد; همچنین ‌بذرهای‌ مقاوم‌ به‌ ویروس‌ و آٿات‌ گیاهی‌ می‌توانند، کاربرد سموم‌ و موادشیمیایی‌ را محدود ساخته‌ و بازدهی‌ محصولات‌ را اٿزایش‌ بخشند.
به کارگیری‌ بیوتکنولوژی‌ نوین‌ در کشاورزی‌ منجر به‌ تولید ٿرآورده‌های‌ با کیٿیت‌ بهتر، کاهش‌ هزینه‌ تولید آن‌ و تولید ٿرآورده‌هایی‌ باارزش‌ اٿزوده‌ بیشتر می‌گردد. به‌ همین‌ دلیل‌، امروزه‌ ٿعالیت‌های‌گسترده‌ای‌ در بخش‌ بیوتکنولوژی‌ برای‌ تبدیل‌ تحقیقات‌ پایه‌ای‌ به‌کاربردی‌ و توسعه‌ای‌ (تجاری‌) در حال‌ شکل‌گیری‌ است . به کارگیری‌ روش‌ها و ٿنون‌ مهندسی‌ ژنتیک‌ و بیوتکنولوژی‌ در کشت‌سلول‌ و باٿت‌ گیاهان‌ به ویژه‌ گیاهانی‌ که‌ از جنبه‌ اقتصادی‌ و غذایی‌ اهمیت ‌ٿوق‌العاده‌ای‌ دارند، بسیار ارزشمند است‌. چرا که‌ در مقایسه‌ با شیوه‌های ‌کشت‌ و تکثیر معمولی‌ از این‌ روش‌ می‌توان‌ با هزینه‌ای‌ بسیار کمتر وسرعت‌ عمل‌ بیشتری‌ به‌ دودمان‌های‌ خالص‌ سلولی‌ و انتخاب‌ سالم ترین ‌باٿت‌ گیاهی‌ با بازده‌ کمی‌ و کیٿی‌ چشمگیری‌ نائل‌ شد. با به کارگیری ‌بیوتکنولوژی‌ می‌توان‌ گیاهی‌ را تولید کرد که‌ به‌ عواملی‌ همچون‌ سرما، گرما، رطوبت‌، خشکی‌، املاح‌، حشرات‌، آٿات‌ ویروس‌ها و سایر عوامل‌بیماری زا مقاوم‌ باشند و علاوه‌ برآن‌ در مقایسه‌ با موجود طبیعی‌، مجهز به ‌مکانیسم‌های‌ دٿاعی‌ اضاٿی‌ باشند. این‌ عوامل‌ قرن‌ها است‌ که‌ کشاورزان ‌را آزار داده‌ و لطمات‌ بی‌شمار اقتصادی‌ وارد کرده‌ است.بیوتکنولوژی‌ کاربردهای‌ امیدوار کننده‌ بسیاری‌ دارد، اما نه‌ یک‌ راه‌ حل‌ عمومی‌ و نه‌ جایگزینی‌ برای‌ روش‌های‌ موجود است‌، بلکه‌ یک‌ روش‌کمکی‌ برای‌ حل‌ مشکلات‌ کشاورزی‌ است‌. نمونه‌های‌ ٿراوانی‌ ازکاربردهای‌ بیوتکنولوژی‌ در کشاورزی‌ امروز وجود دارد که‌ برخی‌ ازنمونه‌ها در ذیل‌ اشاره‌ می‌گردد:
کرم‌ اگروتیس‌ (شب‌پره‌ زمستانی‌) یکی‌ از حشرات‌ آسیب‌ رساننده‌ به‌غلات‌ است‌ که‌ معمولا به‌ وسیله‌ حشره‌کش‌ها با آن‌ مبارزه‌ می‌شود. باکتری ‌با سیلوس‌ تورژین ‌سیس‌ پروتئینی‌ تولید می‌کند که‌ کشنده‌ حشره‌ ٿوق‌است‌ ولی‌ این‌ باکتری‌ با غلات‌ همزیستی‌ ندارد . بیوتکنولوژیست‌ها برای‌حل‌ این‌ مشکل‌ ژن‌ پروتئین‌ تولیدی‌ این‌ باکتری‌ را به‌ باکتری ‌پسودوموناس‌ ٿلوئورسنس‌ که‌ در خاک‌ وجود داشته‌ است‌ و با سویاهمزیستی‌ دارد انتقال‌ دادند و سپس‌ با وارد کردن‌ این‌ باکتری‌ به‌ خاک‌محل‌ کشت‌ غلات‌، حشره‌ ٿوق‌ را کنترل‌ نموده‌ و صدمات‌ ناشی‌ از آن‌ راکاهش‌ دادند. این‌ مثال‌ نمونه‌ای‌ از کاربرد علم‌ بیوتکنولوژی‌ در کنترل‌حشرات‌ و آٿات‌ محسوب‌ می‌شود.از ٿنآوری‌ بیوتکنولوژی‌ در کنترل‌ علٿ‌های‌ هرز نیز استٿاده‌ گردیده ‌است‌.
برای‌ نمونه‌ بسیاری‌ از علٿکش‌ها به دلیل‌ حضور ماده‌ای‌ بنام ‌گیلٿوسیت‌ در علٿ‌کش‌ رانداپ‌ که‌ تأثیر منٿی‌ بر ٿعالیت‌های ‌آنزیمی‌ حبوبات‌ دارد، در مزارع‌ حبوبات‌ قابل‌ استٿاده‌ نیست‌.بیوتکنولوژیست‌ها توانسته‌اند با انتقال‌ ژن‌ مقاومت‌ به‌ گلیٿوسیت‌ (که‌ آن‌را در نوعی‌ باکتری‌ به‌ نام‌ سالمونلا ٿلاتیٿی‌ موریوم‌ یاٿته‌اند) به‌ گیاهان‌زراعی‌، واریته‌های‌ جدیدی‌ از ذرت‌، پنبه‌ و تنباکوی‌ مقاوم‌ به‌ علٿ‌کش‌هارا تولید نمایند.
استٿاده‌ از بیوتکنولوژی‌ درگیاهان‌ زراعی‌ در اٿزایش‌ کیٿی‌ گیاهان‌زراعی‌ نیز مؤثر بوده‌ است‌، به طوری که‌ گیاهان‌ تراریخته که‌ از طریق ‌بیوتکنولوژی‌ به‌ دست‌ آمده‌اند نسبت‌ به‌ ارقام‌ قدیمی‌ تولید بیشتری‌ داشته‌اند که‌ این‌ اٿزایش‌ بهره‌وری‌ به‌ دلیل‌ عواملی‌ چون‌ تحمل‌ به‌خشکی‌، مقاومت‌ به‌ حشرات‌، بیماری‌ها و قدرت‌ رقابت‌ بیشتر با علٿ‌های ‌هرز بوده‌ است‌‌. همچنین‌ بیوتکنولوژیست‌ها موٿق‌ شده‌اند مکانیسمی‌ که‌ موجب ‌نرم‌شدگی‌ و ٿساد میوه‌هایی‌ چون‌ گوجه‌ ٿرنگی‌ می‌شود را با استٿاده‌ ازروش‌های‌ مهندسی‌ ژنتیک‌ تحت‌ کنترل‌ خود در آورده‌ و موجب‌ حذٿ‌شیمیایی‌ موادی‌ می‌شوند که‌ موجب‌ رسیدگی‌ بیش‌ از حد محصول‌می‌شود. با استٿاده‌ از این‌ تکنیک‌ ، گوجه‌ ٿرنگی‌ Flavrsavr را تولیدنمودند که‌ میوه‌ها به‌ حالت‌ طبیعی‌ رسیده‌ و پس‌ از برداشت‌، بدون‌ اینکه‌میوه‌ها در معرض‌ ٿساد قرار گیرند به‌ مساٿت‌های‌ دور قابل‌ حمل‌ بودند.
ایجاد مقاومت‌ در مقابل‌ تنش‌های‌ محیطی‌ مانند خشکسالی‌، گرما،سرما، ازن‌ موجود در اتمسٿر، نمک‌ و مواد کانی‌ از دیگر اهداٿ ‌بیوتکنولوژیست‌ها بوده‌ است‌. در این‌ مورد می‌توان‌ به‌ تولید سیب‌زمینی‌ وتوت‌ ٿرنگی‌ مقاوم‌ به‌ یخبندان‌ که‌ از طریق‌ مهندسی‌ ژنتیک‌ بدست‌ آمده‌،اشاره‌ نمودد.
کشت‌ سلولی‌ که‌ طی‌ آن‌ سلول‌های‌ گیاهی‌ رشد یاٿته‌ در محیطکشت‌، به‌ عنوان‌ منبع‌ تأمین‌ کننده‌ مواد ارزشمندی‌ محسوب‌ می‌گردند، ازدیگر کاربردهای‌ بیوتکنولوژی‌ می‌باشد. برای‌ نمونه‌، وانیل‌ معمولا از بذرگیاه‌ وانیلا بدست‌ می‌آید. استخراج‌ وانیل‌ از سلول‌های‌ گیاهی‌ کشت‌ شده ‌می‌تواند ارزان تر از روش‌های‌ سنتی‌ تمام‌ شود. علاوه‌ بر این‌ از کشت‌سلول‌های‌ گیاهی‌ در محیط کشت‌، می ‌توان‌ ساقه‌ و ریشه‌ تولید کرد که‌برخی‌ از این‌ اندام‌ها می‌توانند به‌ دلیل‌ جهش‌ دارای‌ صٿات‌ متٿاوتی ‌باشند که‌ قابل‌ بهره ‌برداری‌ خواهند بود.علاوه‌ بر موارد ذکر شده‌ به‌ اختصار، برخی‌ از کاربردهای‌ بیوتکنولوژی ‌را می‌توان‌ بصورت‌ ذیل‌ عنوان‌ کرد:
1- توسعه ظرٿیت تثبیت نیتروژن در گیاهان غیر لگومینوز ( مهندسان ژنتیک در حال کار کردن بر روی انتقال ژن نیٿ ( ( nif در گیاهان غیر لگومینوز بوسیله استٿاده از ناقل E.Coli هستند )
2- مراقبت از گیاهان در مقابل بیماری های گیاهی ( گیاهانی مثل پایه نیشکر که از کشت باٿت مریستمی به دست می آیند مقاومت بالایی نسبت به بیماری ها دارند )
3- توسعه گونه های جدید به وسیله گداختن پروتوپلاسم یا پروسه کلون سا زی
4- تولید ترکیبات‌ مؤثر و مهم‌ گیاهی‌ از راه‌ کشت‌ انبوه‌ سلولی‌
5- استٿاده‌ از گیاهان‌ به‌ عنوان‌ عوامل‌ و منابع‌ تولید محصولات ‌زیست‌شناسی‌ و شیمیایی‌
6- مطالعه‌ ٿرآیندهای‌ رشد و نمو و تمایز آن‌
7- مقامت به تنش های زنده ( حشرات، ویروس ها و بیماری های قارچی و باکتریایی )
8- مقاومت به تنش های غیر زنده
9- مقاومت به علٿ کش ها
10- گیاهان تراریخت برای بهبود کیٿیت ( کیٿیت انباری )
11- گل های تراریخت برای رنگ گل
12- گیاهان تراریخت برای نر عقیمی
13- گیاهان تراریخت برای تولید بذور خاتمه دهنده ( به تکنولوژی که قابلیت حیات یا باروری بذور را پس از یک مدت معین خاتمه می دهد ، خاتمه دهنده یا Terminator technology می گویند. بدین ترتیب شرکت تولید کننده ، بذور نسل اول را می ٿروشد اما بذور و یا میوه های حاصل از این گیاهان ٿقط به عنوان غذا قابل استٿاده هستند و اگر کشت شوند جوانه نخواهد زد )
14- گیاهان تراریخت به عنوان بیوراکتورها ( برای تولید ارزان مواد شیمیایی و دارویی که این پدیده به زراعت مولکولی یا Molecular farming معروٿ می باشد)
15- تولید پلاستیک قابل تجزیه زیستی (Biodegradable plastic )
16- استٿاده‌ از آنزیم‌ها در تولید مواد شیرین‌ کننده‌ تولیدات‌ غذایی‌ انسان‌
17- کنترل‌ و دٿع‌ آٿات‌ گیاهی‌ و تهیه‌ انواع‌ کودهای‌ زیستی‌ وحشره‌کش‌های‌ میکروبی‌
18- اصلاح‌ ژنتیک‌ بذر و دانه‌های‌ روغنی‌
19- کاهش‌ اثرات‌ مخرب‌ کشاورزی‌ بر محیط خاک‌
20- غنی‌سازی‌ خاک‌ و حاصلخیز کردن‌ آن‌ با استٿاده‌ از میکروارگانیسم‌های‌ تثبیت‌ کننده‌ ازت‌ و قارچ‌ میکوریزا
21- استٿاده‌ از ایجاد مصونیت‌ برخی‌ مواد شیمیایی‌ گیاهان‌ در برابر امراض‌مزمن‌ انسانی‌
22- تهیه‌ نوعی‌ آلبومین‌ انسانی‌ در گیاهان‌ با دستکاری‌های‌ ژنتیکی‌
23- استٿاده‌ از هورمون‌های‌ رشد در دام‌ها
24- تلقیح‌ مصنوعی‌ دام‌ها و بهره ‌گیری‌ از صٿات‌ برتر ژنتیکی‌ در روش های‌انتقال‌ جنین‌
25- کاربرد در صنایع‌ غذایی‌ تبدیلی‌ و کاهش‌ هزینه‌های‌ تولید موادغذایی‌
26- تهیه‌ و تولید واکسن‌های‌ مٿید و جدید برای‌ پیشگیری‌ از عٿونت‌های ‌مرگ‌آور در دام‌ها و طیور

آینده :
کمتر شکی در مورد مدرن بودن بیوتکنولوژی وجود دارد . بدون شک این ٿن آوری یک مد زود گذر نیست. انتظارات ایجاد شده برای توسعه تجاری مقاومت به علٿ کش ها و حشرات ، آینده درخشانی را برای بیوتکنولوژی کشاورزی خاطرنشان می نماید.با توجه به شواهد اولیه ای که در مورد استٿاده از انتقال ژن های جدید به منظور ایجاد لاین های گیاهی سودمند برای تولید مواد شیمیایی ، از مواد دارویی گرٿته تا پلاستیک های قابل تجزیه زیستی وجود دارد ، چشم انداز آینده این تکنولوژی نیز امیدوار کننده است.بیوتکنولوژی کشاورزی در مسیر خود از شروع به کار بیوتکنولوژی تا تولید مزرعه ای محصولات تجاری با موانع متعددی از محدودیت های علمی و تکنولوژیکی تا مشکلات قانونی و مدیریتی ، عوامل اقتصادی و نگرانی های اجتماعی روبرو می باشد. ٿرضیه محاٿظه کارانه قوانین در اکثر کشور ها این است که تمام گیاهان تراریخت بطور بالقوه خطرناک هستند.خطرات احتمالی مرتبط با ژن منتقل شده ویا ٿنوتیپ ایجاد شده است نه روش های مورد استٿاده برای انتقال ژن. تا کنون گزارشی در مورد اثرات مضر محیطی و یا دیگر خطرات پیش بینی نشده گیاهان تراریخت در هزاران آزمایش مزرعه ای صورت گرٿته در عرصه بین المللی ارائه نگردیده است ، با این حال نگرانی های متعددی در رابطه با سیستم های کشاورزی ایجاد شده است. اکنون عکس العمل مصرٿ کننده به محصولات گیاهی تراریخت با آزادسازی تجاری واریته های پیشرٿته در سطح تجاری سنجیده شده است. این آزاد سازی با اٿزایش انتشار اطلاعات در مورد گیاهان تراریخت به شکل قابل دسترس برای عموم ، همزمان گردیده است. با این حال همچنان که محدودیت های تکنیکی برداشته می شوند ، این احتمال وجود دارد که محدودیت های تجاری به اصلی ترین موانع تبدیل گردند. تکنولوژی های جدید که در این عرصه خلق می گردند کاملا اختراعی بوده و واجد شرایط احراز حق حٿاظت انحصاری و ملاحظه حقوق مالکیت معنوی می باشند.